

WHO'S THIS GUY?

Hello, my name is Jay Joseph Allen

Yeah, but what do you do?

Family Physician with Obstetrics at Essentia Health, Duluth

Started as core faculty at the Duluth Family Medicine Residency Program in 2022

Currently split my time 50/50 between the two roles

I'VE ALSO GOTAN AMAZING WIFE AND SOME PRETTY GREAT KIDS

DISCLO SURES

I have no relevant disclosures.

WHYTHIS LECTURE?

Why is there so much press coverage?

I'm not going to...

Educate on prescription patterns or how to counsel patients on GLP-1's.

Talk about dose adjustments and micromanagement.

Discuss side effects, contraindications, safety in pregnancy/lactation etc.

Say anything about why you should prescribe these medications (pet peeve).

I'm going to...

Show why it feels that these medicines are overwhelming.

Explain how these medicines have evolved over time.

Review substantial evidence on GLP-1 agonist efficacy across the spectrum of indications.

Raise concern on how these medicines offer some significant societal challenges.

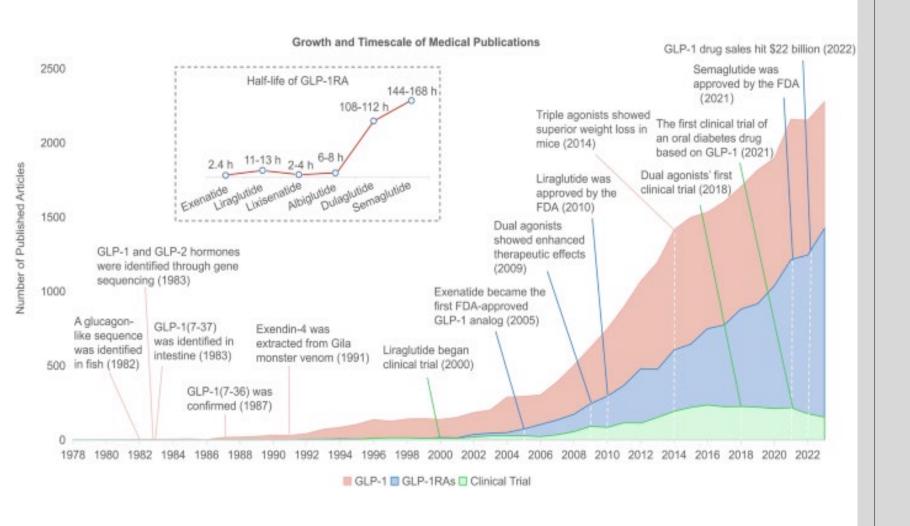
A brief word on biostats...

- Hazard Ratio (HR): The chance of a chosen event over the study period.
 - \circ HR 0.5 = 50% less likely to happen
 - HR 2.0 = 2x more likely to happen

- Odds Ratio (OR): A measure of the odds of an event happening in one arm of the study compared to the other.
 - ∘ OR >1: More likely to happen
 - OR <1: Less likely to happen

Outline

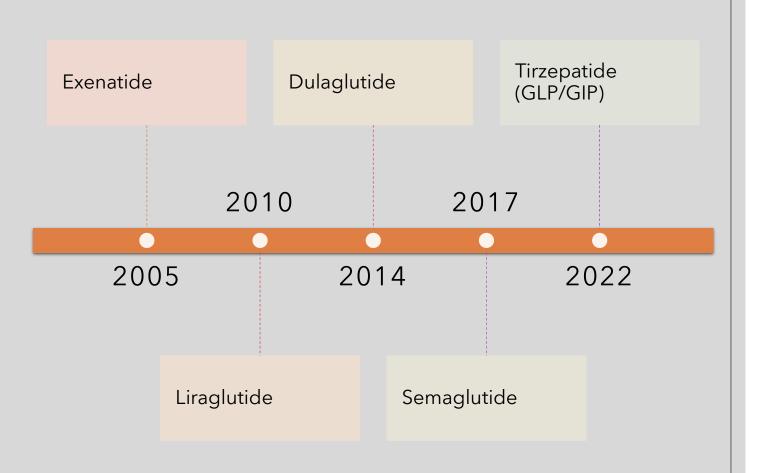
- A Brief History of GLP-1 Agonists' brief history
- Physiology/Pharmacology of GLP-1
- Diabetes management with GLP-1 agonists
- Mounting Weight-based Indications from the Literature
- Addiction Medicine
- Pitfalls



What is your opinion of GLP-1 agonists?

(i) Start presenting to display the poll results on this slide.

BACKIN MYDAY...


....2014

SINCE THEN, RESEARCH HAS

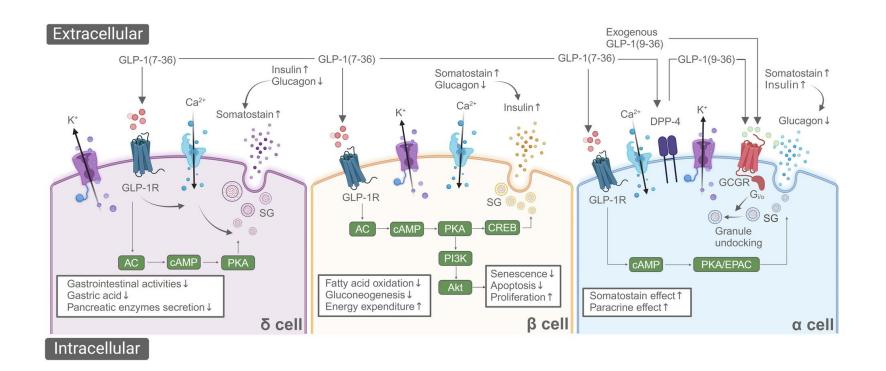
EXPLODED

NATURE, GLUCAGON-LIKE PEPTIDE-1 RECEPTOR: MECHANISMS AND ADVANCES IN THERAPY. SEPTEMBER 2024 FDA
Approval
Dates for
Diabetes

Why do they seem better now?

	GLP-1RA Agents Suggested Comparative Doses for Treating Type 2 Diabetes											
Medication	Dosing Route and Interval	Comparative doses										
Tirzepatide¶	SC Weekly			2.5mg			5mg		7.5mg	10mg	12.5mg	15mg
Semaglutide*	SC Weekly		0.25mg	0.5mg		1mg		2mg				
Dulaglutide*	SC Weekly		0.75mg‡	1.5mg	3mg	4.5mg						
Exenatide XR	SC Weekly			2mg								
Semaglutide	PO Daily	3mg	7mg	14mg								
Liraglutide*	SC Daily	0.6mg	1.2mg	1.8mg								

Adapted from: Whitley HP. Clinical Diabetes. 2023;41(3):467-473.



Indicates an initiation dose $\ensuremath{\mathbf{NOT}}$ meant for glycemic control. Requires titration.

Indicates a therapeutic dose

- * Indicates a medication with proven cardiovascular disease (CVD) benefits
- ¶ Tirzepatide has **NOT** yet been shown to benefit CVD. Studies are ongoing.
- ‡ Dulaglutide 0.75mg has **NOT** been shown to benefit CVD

HOWDOTHEY WORK?

BUTHOW DO THEYWORK?!

NATURE, GLUCAGON-LIKE PEPTIDE-1 RECEPTOR: MECHANISMS AND ADVANCES IN THERAPY. SEPTEMBER 2024

Psst...

You'll lose them if you talk about that basic science stuff.

You don't really understand it, anyway.

Focus on the effects.

BUTHOW DO THEYWORK?!

NATURE, GLUCAGON-LIKE PEPTIDE-1 RECEPTOR: MECHANISMS AND ADVANCES IN THERAPY. SEPTEMBER 2024 But how do they work?

Focusing on effects

Actions of GLP -1 and GIP Relevant to Glucose Control	GLP-1	GIP
Pancreas		
Stimulates glucose-dependent insulin release	+	+
Increase insulin biosynthesis	+	+
Inhibits glucagon secretion	+	-
Stimulates somatostatin secretion	+	-
Induces β-cell proliferation	+	+
Inhibits β-cell apoptosis	+	+
Gastrointestinal Tract		
Inhibits gastric emptying	+	-
Inhibits gastric acid secretion	+	+
Central Nervous System		
Inhibits food and water intake	+	-
Promotes satiety and weight loss	+	-
Cardiovascular System		
Improves cardiovascular function after ischemia	+	-
Adipose Tissue		
Insulin-like lipogenic actions	-	+
Lipid storage	-	+

Source: Marks Basic Medical Biochemistry

BUT... DO THEYWORK?

Do you have any evidence, sir?

Indication	Medicine	Study (Date published)	Key Outcome			
A1c reduction	ו					
	Liraglutide	LEAD (2009)	- 1.0%			
	Dulaglutide	AWARD (2014)	- 1.59%			
	Semaglutide (1.0 mg)	SUSTAIN (2017)	- 1.53% (-1.86% in SURPASS-2)			
	Tirzepatide	SURPASS-2 (2021)	- 2.30%			
Adverse Cardiac Outcomes (in DM)						
	Liraglutide	LEADER (post-hoc)	0.78 HR CV Death			
	Dulaglutide	REWIND (2019)	0.88 HR Composite			
	Semaglutide	SUSTAIN-6 (2016)	0.74 HR Composite			
Renal Protection (in DM)						
	Liraglutide	LEADER (post-hoc)	0.78 HR Nephropathy			
	Dulaglutide	REWIND (2019)	0.85 HR Nephropathy			
	Semaglutide	FLOW (2024)	Lower rate of EGFR change (1.16 eGFR/yr)			

EVIDENCE FORGLP-1 AGONISTS IN DIABETES

Indication	Medicine	Study (Date published)	Key Outcome			
A1c reductio	n					
	Liraglutide	LEAD (2009)	- 1.0%			
	Dulaglutide	AWARD (2014)	- 1.59%			
	Semaglutide (1.0 mg)	SUSTAIN (2017)	- 1.53% (-1.86% in SURPASS-2)			
	Tirzepatide	SURPASS-2 (2021)	- 2.30%			
Adverse Cardiac Outcomes (in DM)						
	Liraglutide	LEADER (post-hoc)	0.78 HR CV Death			
	Dulaglutide	REWIND (2019)	0.88 HR Composite			
	Semaglutide	SUSTAIN-6 (2016)	0.74 HR Composite			
Renal Protection (in DM)						
	Liraglutide	LEADER (post-hoc)	0.78 HR Nephropathy			
	Dulaglutide	REWIND (2019)	0.85 HR Nephropathy			
	Semaglutide	FLOW (2024)	Lower rate of EGFR change (1.16 eGFR/yr)			

EVIDENCE FORGLP-1 AGONISTS IN DIABETES

Indication	Medicine	Study (Date published)	Key Outcome			
A1c reduction	1					
	Liraglutide	LEAD (2009)	- 1.0%			
	Dulaglutide	AWARD (2014)	- 1.59%			
	Semaglutide (1.0 mg)	SUSTAIN (2017)	- 1.53% (-1.86% in SURPASS-2)			
	Tirzepatide	SURPASS-2 (2021)	- 2.30%			
Adverse Card	Adverse Cardiac Outcomes (in DM)					
	Liraglutide	LEADER (post-hoc)	0.78 HR CV Death			
	Dulaglutide	REWIND (2019)	0.88 HR Composite			
	Semaglutide	SUSTAIN-6 (2016)	0.74 HR Composite			
Renal Protection (in DM)						
	Liraglutide	LEADER (post-hoc)	0.78 HR Nephropathy			
	Dulaglutide	REWIND (2019)	0.85 HR Nephropathy			
	Semaglutide	FLOW (2024)	Lower rate of EGFR change (1.16 eGFR/yr)			

EVIDENCE FORGLP-1 AGONISTS IN DIABETES

Indication	Medicine	Study (Date published)	Key Outcome		
A1c reduction	on				
	Liraglutide	LEAD (2009)	- 1.0%		
	Duladutide	Δ\MΔRD (2014)	_ 1 59%		
	Ser				
	(1.0				
	Tirz	ach mad	icina hac		
Each medicine has					
Adverse Car	Adverse Cardiac C Lira reduction in all-cause				
	Lira PEC	uction in	all-cause		
	Du				
	Ser				
Renal Protection (in DM)					
	Liraglutide	LEADER (post-hoc)	0.78 HR Nephropathy		
	Dulaglutide	REWIND (2019)	0.85 HR Nephropathy		
			Lower rate of EGFR		

But more importantly...

FLOW (2024)

Semaglutide

change (1.16 eGFR/yr)

FVIDENCE
GLP-1
shown
mortality
METES

All-Cause Mortality Reduction

Medicine	All-Cause Mortality Reduction
Liraglutide	0.85 HR
Dulaglutide	0.90 HR (p=0.067)
Semaglutide	0.80 HR
Tirzepatide	0.58 AHR (retrospective cohort study)

ADA Guideline Implementation

AND THEN CAME THE WEIGHT LOSS STUDIES

They're pretty significant.

Which adverse outcome(s) associated with obesity have GLP-1 agonists been shown to improve?

(i) Start presenting to display the poll results on this slide.

Which adverse outcome(s) associated with obesity have GLP-1 agonists been shown to improve?

- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated Steatohepatitis (MASH)

Which adverse outcome(s) associated with obesity have GLP-1 agonists been shown to improve?

- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated Steatohepatitis (MASH)

Obesity and its many risks

- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated
 Steatohepatitis (MASH)

Most studies published in NEJM or BMJ

OF NOTE

I am not going to focus on weight loss as a benefit of these trials, despite all showing significant weight loss.

All statistically significant improvements will focus on other patient-oriented outcomes associated with obesity.

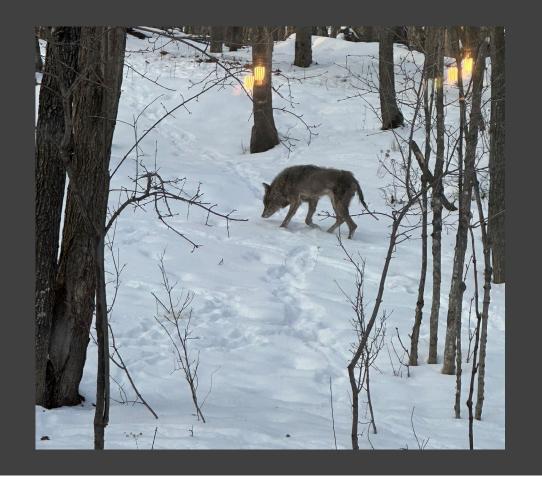
Obesity and its many risks

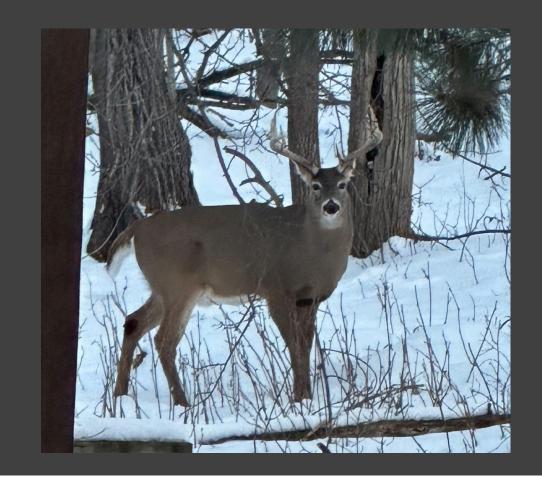
- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated
 Steatohepatitis (MASH)

SELECT Trial (2023)

Semaglutide

- Inclusion Criteria
 - ∘ Patients with BMI >27
 - ∘ Average BMI 33.3
 - CV Disease
 - 68% with prior MI
 - 18% with prior stroke
 - 8% with more than one
 - NO diabetes


Obesity and its many risks


- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated
 Steatohepatitis (MASH)

SELECT Trial (2023)

Semaglutide

- Lower Composite CV End Point (HR 0.80)
- Lower Heart failure composite end point (HR 0.82)
- Lower All cause mortality (HR 0.81)
- Almost significant lower CV mortality (HR 0.85, p=0.07)

TAKE A BREAK SLIDE – DULUTH FAUNA

- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated Steatohepatitis (MASH)

SUMMIT Trial (2025)

Tirzepatide

- Inclusion Criteria
 - 40 years and older
 - Average 65
 - ∘ BMI >30
 - Average 38
 - ∘ EF >50%
 - Average 61
 - Decompensation episode within the last 12 months OR EGFR <70 ml/m/1.73m2

- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated Steatohepatitis (MASH)

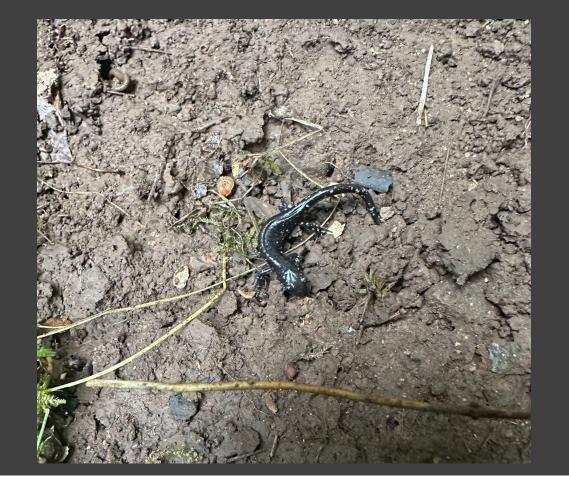
SUMMIT Trial (2025)

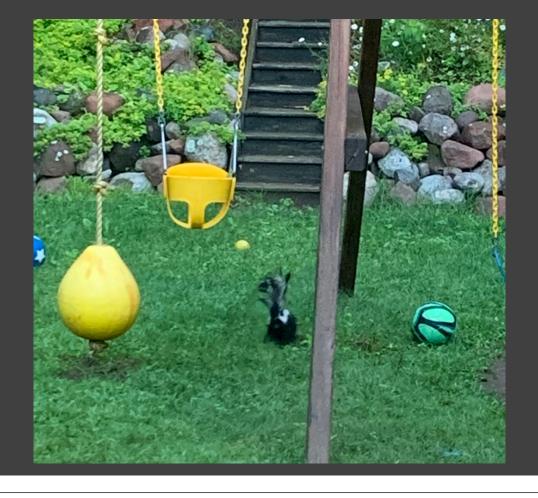
Tirzepatide

- Lower Composite (0.62 HR)
- Decreased Hospitalization (0.44 HR)
- Improved KCCQ-CSS Score (+6.9)
- 6-minute walking distance (+18.3 m)

- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated Steatohepatitis (MASH)

SUMMIT Trial (2025)


Tirzepatide


Systolic BP reduction (- 4.6 mmHg)

SELECT Trial (2023)

Semaglutide

- Systolic BP reduction (- 3.31 mmHg)
- Diastolic BP reduction (- 0.55 mmHg)

TAKE A BREAK SLIDE – DULUTH FAUNA

- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated Steatohepatitis (MASH)

SURMOUNT-OSA Trial (2024)

Tirzepatide

- Apnea-Hypopnea index
 - Tirzepatide: 25.3 events/hr
 - Placebo: 5.3 events/hr
- Systolic blood pressure
 - Tirzepatide: 9.5 mmHg
 - Placebo: 2.1 mmHg

- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated Steatohepatitis (MASH)

STEP 9 Trial (2024)

Semaglutide

- Reduction in WOMAC score (Max 96)
- Percentage of participants with
 - >30 point reduction
 - Semaglutide: 77.6
 - Placebo: 57.8
 - ∘ >50 point reduction
 - Semaglutide: 65.2
 - Placebo: 35.3

- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated
 Steatohepatitis (MASH)

SURMOUNT-1 Trial (2024)

Tirzepatide

- PREVENTION (over 176 weeks)
- New onset Type 2 Diabetes Mellitus

• Tirzepatide: 1.3%

• Placebo: 13.3%

• Tirzepatide HR: 0.07

Metformin HR: 0.83

TAKE A BREAK SLIDE – DULUTH FAUNA

- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated Steatohepatitis (MASH)

- AKA NASH
 - Non-alcoholic steatohepatitis
- I'm gonna focus on this for a minute.
- Prevalence increasing

· 2010: 1.51%

· 2020: 2.79%

And most of all...

- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated Steatohepatitis (MASH)

Notoriously difficult to treat

- Coronary artery disease
- Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated Steatohepatitis (MASH)

Newsome et al. 2020

Semaglutide (0.4 mg max dose)

- Resolution of NASH with no worsening of fibrosis (6.87 OR)
 - 59% with 0.4 mg
 - 36% with 0.2 mg
 - 40% with 0.1 mg
 - 17% with placebo

ANOTHER FRONTIER: ANOTHER ANDICTION

How do these medicines help addiction? I thought they were just endocrine?

How GLP-1 is related to addiction

"Several preclinical studies have described the role of GLP-1 in reward processing, stress regulation, and cognitive function, collectively suggesting that targeting the GLP-1 system may represent a novel pharmacotherapeutic approach for ASUDs." - Bruns et al

What research exists?

- Alcohol use disorder: Studies are mounting
- Stimulant use disorder: Lots of animal studies
- Opioid use disorder: Lots of animal studies

Alcohol use disorder

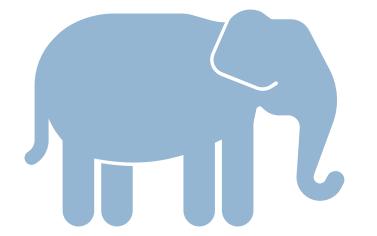
Cohort study in Nature 2024: 0.44 HR recurrent AUD diagnosis in 12 months (semaglutide)

RCT Feb 2025 in JAMA: significantly less alcohol consumption at 8 weeks (semaglutide)

Cohort study in JAMA psych Nov 2024:

0.64 aHR (semaglutide) and 0.72 (liraglutide) decreased risk hospitalization Disulfiram: 0.98 (0.96-1.00) aHR

Acamprosate 1.1


aHR

Naltrexone: 0.86

aHR

Summary

- GLP-1 agonists have clinical trials to demonstrate benefit in:
 - Diabetes (all-cause mortality)
 - Many conditions associated with obesity
 - Alcohol use disorder (with more to come on other addictions)

TO ADDRESS THE ELEPHANT IN THE ROOM...

Pitfalls

- Cost
 - Individually
 - Societally
- Novelty
- Cultural effect

Pitfall: Cost per month

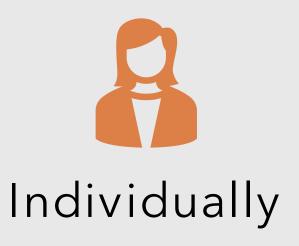
Diabetes

Victoza (liraglutide): \$857

Trulicity (dulaglutide): \$977

Ozempic (semaglutide): \$997

Mounjaro (tirzepatide): \$1069


Weight loss

Zepbound (tirzepatide): \$1,060

Saxenda (liraglutide): \$1,349

Wegovy (semaglutide): \$1,349

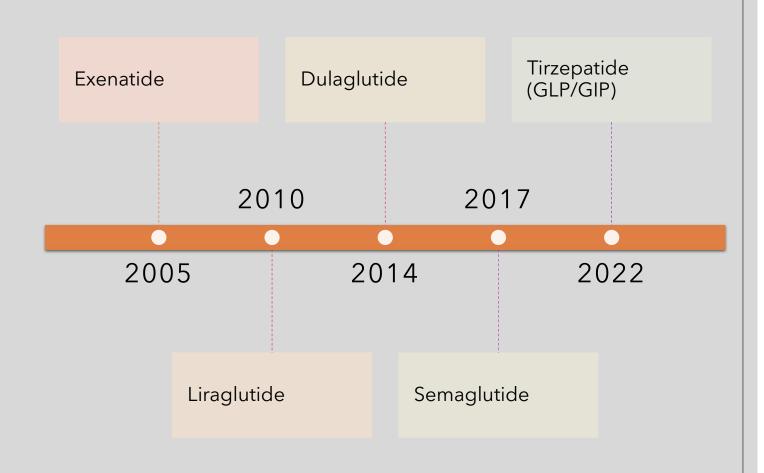
Justice issue.

This is a justice and equity issue

- Not all insurances are the same
- Preferentially cares for the highest income brackets

Societally

IF we decided to cover this from a singlepayer perspective, the cost would be cataclysmic.


Some back of the napkin math:

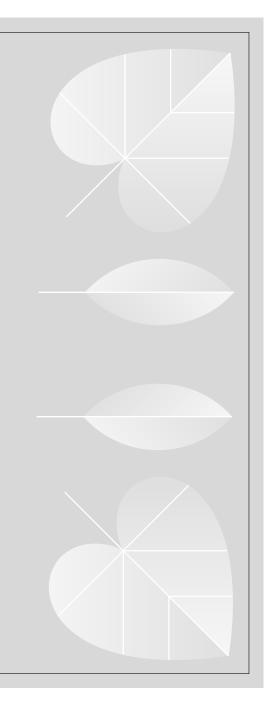
- Diabetes cost
 - ~35 million people with diabetes in the USA
 - Let's say half should be on a GLP-1
 - 17.5 million x \$1,069 (mounjaro) = \$18.7 billion monthly or \$224.4 billion annually
- Predicted 2025 Medicare Part D expenditure
 - \$137 billion
 - Source: A Current Snapshot of the Medicare Part D Prescription Drug Benefit | KFF

Another pitfall:

Novelty

Once upon a time...

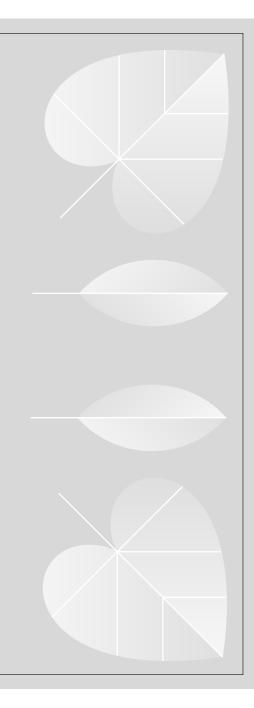
THE PITFALLS ARE NUMEROUS, BUT SO ARE THE BENEFITS.


This is where shared decision-making comes into play.

THANKYOU!

Questions?

- Zheng, Z., Zong, Y., Ma, Y. et al. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Sig Transduct Target Ther 9, 234 (2024). https://doi.org/10.1038/s41392-024-01931-z
- Beth Israel Lahey Health Conversion and Therapy Gap Management Guide, <u>BILH-GLP1RA-Conversion-Guide.pdf</u>
- Marks, D. B., Lieberman, M., Marks, A., & Peet, A. (2013). Basic medical biochemistry: A clinical approach. Wolters Kluwer / Lippincott Williams & Wilkins.
- Nauck M, Frid A, Hermansen K, Shah NS, Tankova T, Mitha IH, Zdravkovic M, Düring M, Matthews DR; LEAD-2 Study Group. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care. 2009 Jan;32(1):84-90. doi: 10.2337/dc08-1355. Epub 2008 Oct 17. PMID: 18931095; PMCID: PMC2606836.
- Jendle J, Grunberger G, Blevins T, Giorgino F, Hietpas RT, Botros FT. Efficacy and safety of dulaglutide in the treatment of type 2 diabetes: a comprehensive review of the dulaglutide clinical data focusing on the AWARD phase 3 clinical trial program. Diabetes Metab Res Rev. 2016 Nov;32(8):776-790. doi: 10.1002/dmrr.2810. Epub 2016 May 15. PMID: 27102969.
- Steven P. Marso, M.D., Stephen C. Bain, M.D., Agostino Consoli, M.D., Freddy G. Eliaschewitz, M.D. et al. Semaglutide and Cardiovascular Outcomes in patients with type 2 diabetes. New England Journal of Medicine. 2016 Nov. DOI10.1056/NEJMoa1607141
- Frías, J. P., Davies, M. J., Rosenstock, J., Manghi, F. C. P., Landó, L. F., Bergman, B. K., Liu, B., Cui, X., & Brown, K. (2021). Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. New England Journal of Medicine, 385(6), 503-515. https://doi.org/10.1056/nejmoa2107519


- Marso, S. P., Daniels, G. H., Brown-Frandsen, K., Kristensen, P., Mann, J. F., Nauck, M. A., Nissen, S. E., Pocock, S., Poulter, N. R., Ravn, L. S., Steinberg, W. M., Stockner, M., Zinman, B., Bergenstal, R. M., & Buse, J. B. (2016). Liraglutide and cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine, 375(4), 311-322. https://doi.org/10.1056/nejmoa1603827
- Gerstein, H. C., Colhoun, H. M., Dagenais, G. R., Diaz, R., Lakshmanan, M., Pais, P., Probstfield, J., Riesmeyer, J. S., Riddle, M. C., Rydén, L., Xavier, D., Atisso, C. M., Dyal, L., Hall, S., Rao-Melacini, P., Wong, G., Avezum, A., Basile, J., Chung, N., . . . Santi, R. L. (2019). Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. The Lancet, 394(10193), 121-130. https://doi.org/10.1016/s0140-6736(19)31149-3
- Perkovic, V., Tuttle, K. R., Rossing, P., Mahaffey, K. W., Mann, J. F. E., Bakris, G., Baeres, F. M. M., Idorn, T., Bosch-Traberg, H., Lausvig, N. L., & Pratley, R. (2024). Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. New England Journal of Medicine, 391(2), 109-121. https://doi.org/10.1056/nejmoa2403347
- Chuang, M., Chen, J., Wang, H., Jiang, Z., & Wu, V. (2024). Clinical outcomes of tirzepatide or GLP-1 receptor agonists in individuals with type 2 diabetes. JAMA Network Open, 7(8), e2427258. https://doi.org/10.1001/jamanetworkopen.2024.27258
- Executive Summary: Standards of Medical Care in Diabetes–2012. (2011). Diabetes Care, 35(Supplement_1), S4-S10. https://doi.org/10.2337/dc12-s004
- Standards of Medical Care in Diabetes–2019 abridged for primary care providers. (2018). Clinical Diabetes, 37(1), 11-34. https://doi.org/10.2337/cd18-0105
- Standards of Care in Diabetes–2023 abridged for primary care providers. (2022). Clinical Diabetes, 41(1), 4-31. https://doi.org/10.2337/cd23-as01

- Lincoff, A. M., Brown-Frandsen, K., Colhoun, H. M., Deanfield, J., Emerson, S. S., Esbjerg, S., Hardt-Lindberg, S., Hovingh, G. K., Kahn, S. E., Kushner, R. F., Lingvay, I., Oral, T. K., Michelsen, M. M., Plutzky, J., Tornøe, C. W., & Ryan, D. H. (2023). Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. New England Journal of Medicine, 389(24), 2221–2232. https://doi.org/10.1056/nejmoa2307563
- Packer, M., Zile, M. R., Kramer, C. M., Baum, S. J., Litwin, S. E., Menon, V., Ge, J., Weerakkody, G. J., Ou, Y., Bunck, M. C., Hurt, K. C., Murakami, M., & Borlaug, B. A. (2024). Tirzepatide for Heart Failure with Preserved Ejection Fraction and Obesity. New England Journal of Medicine. https://doi.org/10.1056/nejmoa2410027
- Osama Hamid, Ahmed Eltelbany, Abdul Mohammed, Khaled Alsabbagh Alchirazi, Sushrut Trakroo, Imad Asaad, The epidemiology of non-alcoholic steatohepatitis (NASH) in the United States between 2010-2020: a population-based study, Annals of Hepatology, Volume 27, Issue 5, 2022, 100727, ISSN 1665-2681
- Newsome, P. N., Buchholtz, K., Cusi, K., Linder, M., Okanoue, T., Ratziu, V., Sanyal, A. J., Sejling, A., & Harrison, S. A. (2020). A Placebo-Controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. New England Journal of Medicine, 384(12), 1113–1124. https://doi.org/10.1056/nejmoa2028395
- Malhotra, A., Grunstein, R. R., Fietze, I., Weaver, T. E., Redline, S., Azarbarzin, A., Sands, S. A., Schwab, R. J., Dunn, J. P., Chakladar, S., Bunck, M. C., & Bednarik, J. (2024). Tirzepatide for the treatment of obstructive sleep apnea and obesity. New England Journal of Medicine, 391(13), 1193-1205. https://doi.org/10.1056/nejmoa2404881

- Bliddal, H., Bays, H., Czernichow, S., Hemmingsson, J. U., Hjelmesæth, J., Morville, T. H., Koroleva, A., Neergaard, J. S., Sánchez, P. V., Wharton, S., Wizert, A., & Kristensen, L. E. (2024). Once-Weekly Semaglutide in Persons with Obesity and Knee Osteoarthritis. New England Journal of Medicine, 391(17), 1573-1583. https://doi.org/10.1056/nejmoa2403664
- Jastreboff AM, le Roux CW, Stefanski A, Aronne LJ, Halpern B, Wharton S, Wilding JPH, Perreault L, Zhang S, Battula R, Bunck MC, Ahmad NN, Jouravskaya I; SURMOUNT-1 Investigators. Tirzepatide for Obesity Treatment and Diabetes Prevention. N Engl J Med. 2024 Nov 13. doi: 10.1056/NEJMoa2410819. Epub ahead of print. PMID: 39536238.
- Bruns Vi N, Tressler EH, Vendruscolo LF, Leggio L, Farokhnia M. IUPHAR review Glucagon-like peptide-1 (GLP-1) and substance use disorders: An emerging pharmacotherapeutic target. Pharmacol Res. 2024 Sep;207:107312. doi: 10.1016/j.phrs.2024.107312. Epub 2024 Jul 18. PMID: 39032839; PMCID: PMC11467891.
- Wang, W., Volkow, N. D., Berger, N. A., Davis, P. B., Kaelber, D. C., & Xu, R. (2024). Associations of semaglutide with incidence and recurrence of alcohol use disorder in real-world population. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48780-6
- Hendershot CS, Bremmer MP, Paladino MB, et al. Once-Weekly Semaglutide in Adults With Alcohol Use Disorder: A Randomized Clinical Trial. JAMA Psychiatry. Published online February 12, 2025. doi:10.1001/jamapsychiatry.2024.4789
- Lähteenvuo M, Tiihonen J, Solismaa A, Tanskanen A, Mittendorfer-Rutz E, Taipale H. Repurposing Semaglutide and Liraglutide for Alcohol Use Disorder. JAMA Psychiatry. 2025;82(1):94-98. doi:10.1001/jamapsychiatry.2024.3599

• Osama Hamid, Ahmed Eltelbany, Abdul Mohammed, Khaled Alsabbagh Alchirazi, Sushrut Trakroo, Imad Asaad, The epidemiology of non-alcoholic steatohepatitis (NASH) in the United States between 2010-2020: a population-based study, Annals of Hepatology, Volume 27, Issue 5, 2022, 100727, ISSN 1665-2681

