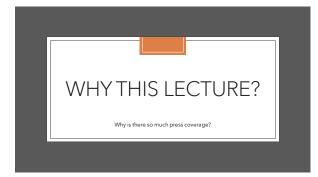
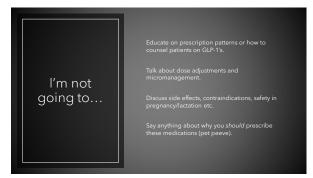


Yeah, but what do you do?

Family Physician with Obstetrics at Essentia Health, Duluth

Started as core faculty at the Duluth Family Medicine Residency Program in 2022


Currently split my time 50/50 between the two roles


4

5

DISCLOSURES I have no relevant disclosures.

8

I'm going to... Show why it feels that these medicines are overwhelming.

Explain how these medicines have evolved over time.

Review substantial evidence on GLP-1 agonist efficacy across the spectrum of indications.

Raise concern on how these medicines offer some significant societal challenges.

A brief word on biostats...

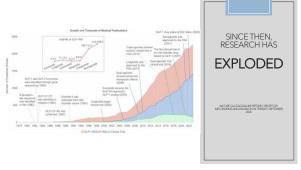
- Hazard Ratio (HR): The chance of a chosen event over the study period.
 HR 0.5 50% less likely to happen
 HR 2.0 2x more likely to happen
- Odds Ratio (OR): A measure of the odds of an event happening in one arm of the study compared to the other.
 OR >1: More likely to happen
 OR <1: Less likely to happen

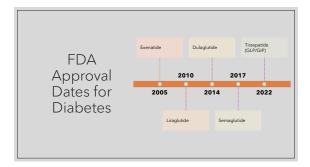
10

11

slido

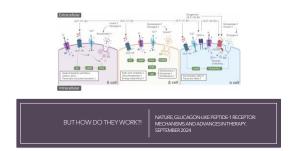
Please download and install the Slido app on all computers you use





What is your opinion of GLP-1 agonists?

 $\ensuremath{\bigcirc}$ Start presenting to display the poll results on this slide.



		GLP.1E	IA Agents Si	seested C	omnarativ	e Doses fo	r Treating	Tyne 2 Di	ahetes			
Medication	Dosing Route and Interval			-ggesteu e			arative d					
Tirzepatide¶	SC Weekly			2.5mg			5mg		7.5mg	10mg	12.5mg	15m
Semaglutide*	SC Weekly		0.25mg	0.5mg		1mg		2mg				
Dulaglutide*	SC Weekly		0.75mg)	1.5mg	3mg	4.5mg						
Exenatide XR	SC Weekly			2mg								
Semaglutide	PO Daily	3mg	7mg	14mg								
Liraglutide*	SC Daily	0.6mg	1.2mg	1.8mg								
	Hey HP. Chrical Diabe								cardiovescula			
	an initiation dose NO	meant for g	lycemic control	Requires titral	tion.		de has NOT y de 0.75me he		to benefit Cv		e ongoing.	
		meant for g	lycemic control	Requires thru	tion.						e ongoing.	

Psst...

You'll lose them if you talk about that basic science stuff.

You don't really understand it, anyway.

Focus on the effects.

·

19

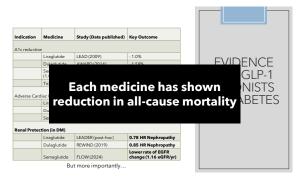
But how do they work?
Focusing on effects

Actions of GLP -1 and GIP Relevant to Glucose Control	GLP-1	GIP
Pancreas		
Stimulates glucose-dependent insulin release	+	+
Increase insulin biosynthesis	+	+
Inhibits glucagon secretion	+	-
Stimulates somatostatin secretion	+	
Induces β-cell proliferation	+	+
Inhibits β-cell apoptosis	+	+
Gastrointestinal Tract		
Inhibits gastric emptying	+	-
Inhibits gastric acid secretion	+	+
Central Nervous System		
Inhibits food and water intake	+	-
Promotes satiety and weight loss	+	
Cardiovascular System		
Improves cardiovascular function after ischemia	+	-
Adipose Tissue		
Insulin-like lipogenic actions	-	+
Lipid storage	-	+

Source: Marks Basic Medical Biochemistr

20

Indication	Medicine	Study (Date published)	Key Outcome
A1c reduction	on		
	Liraglutide	LEAD (2009)	- 1.0%
	Dulaglutide	AWARD (2014)	- 1.59%
	Semaglutide (1.0 mg)	SUSTAIN (2017)	- 1.53% (-1.86% in SURPASS-2)
	Tirzepatide	SURPASS-2 (2021)	- 2.30%
Adverse Car	diac Outcomes (i	n DM) LEADER (post-hoc)	0.78 HR CV Death
	Liraglutide		
	Liraglutide Dulaglutide Semaglutide	REWIND (2019) SUSTAIN-6 (2016)	0.88 HR Composite 0.74 HR Composite
Renal Protec	Dulaglutide Semaglutide	REWIND (2019)	0.88 HR Composite
Renal Protec	Dulaglutide Semaglutide	REWIND (2019)	0.88 HR Composite
Renal Protec	Dulaglutide Semaglutide	REWIND (2019) SUSTAIN-6 (2016)	0.88 HR Composite 0.74 HR Composite


Indication	Medicine	Study (Date published)	Key Outcome
A1c reducti	on		
	Liraglutide	LEAD (2009)	- 1.0%
	Dulaglutide	AWARD (2014)	- 1.59%
	Semaglutide (1.0 mg)	SUSTAIN (2017)	- 1.53% (-1.86% in SURPASS-2)
	Tirzepatide	SURPASS-2 (2021)	- 2.30%
Adverse Car	diac Outcomes (i		
Adverse Car	diac Outcomes (i	n DM)	
Adverse Car	Liraglutide	LEADER (post-hoc)	0.78 HR CV Death
Adverse Car	Liraglutide Dulaglutide	LEADER (post-hoc) REWIND (2019)	0.88 HR Composite
Adverse Car	Liraglutide	LEADER (post-hoc)	
Adverse Car	Liraglutide Dulaglutide Semaglutide	LEADER (post-hoc) REWIND (2019)	0.88 HR Composite
	Liraglutide Dulaglutide Semaglutide	LEADER (post-hoc) REWIND (2019)	0.88 HR Composite
	Liraglutide Dulaglutide Semaglutide tion (in DM)	LEADER (post-hoc) REWIND (2019) SUSTAIN-6 (2016)	0.88 HR Composite 0.74 HR Composite

EVIDENCE FOR GLP-1 AGONISTS IN DIABETES

23

Indication	Medicine	Study (Date published)	Key Outcome
A1c reduction	on		
	Liraglutide	LEAD (2009)	- 1.0%
	Dulaglutide	AWARD (2014)	- 1.59%
	Semaglutide (1.0 mg)	SUSTAIN (2017)	- 1.53% (-1.86% in SURPASS-2)
	Tirzepatide	SURPASS-2 (2021)	- 2.30%
Adverse Ca	rdiac Outcomes	(in DM) LEADER (post-hoc)	0.78 HR CV Death
Adverse Ca			0.78 HR CV Death 0.88 HR Composite
Adverse Ca	Liraglutide	LEADER (post-hoc)	
Adverse Ca	Liraglutide Dulaglutide Semaglutide tion(in DM)	LEADER (post-hoc) REWIND (2019) SUSTAIN-6 (2016)	0.88 HR Composite 0.74 HR Composite
	Liraglutide Dulaglutide Semaglutide tion (in DM) Liraglutide	LEADER (post-hoc) REWIND (2019) SUSTAIN-6 (2016) LEADER (post-hoc)	0.88 HR Composite 0.74 HR Composite 0.78 HR Nephropathy
	Liraglutide Dulaglutide Semaglutide tion(in DM)	LEADER (post-hoc) REWIND (2019) SUSTAIN-6 (2016)	0.88 HR Composite 0.74 HR Composite

EVIDENCE FOR GLP-1 AGONISTS	
IN DIABETES	

All-C	ause Mortality Reduction
Medicine	All-Cause Mortality Reduction
Liraglutide	0.85 HR
Dulaglutide	0.90 HR (p=0.067)
Semaglutide	0.80 HR
Tirzepatide	0.58 AHR (retrospective cohort study)
Titzepatide	

slido

Please download and install the Slido app on all computers you use

Which adverse outcome(s) associated with obesity have GLP-1 agonists been shown to improve?

① Start presenting to display the poll results on this slide.

29

Which adverse outcome(s) associated with obesity have GLP-1 agonists been shown to improve?

- Coronary artery disease
- · Congestive Heart Failure
- Hypertension
- Obstructive Sleep Apnea
- Osteoarthritis
- Type 2 Diabetes Mellitus
- Metabolic Dysfunction Associated Steatohepatitis (MASH)

	Which adverse outcome(s) associated with obesity ave GLP-1 agonists been shown to improve?
0	Coronary artery disease
0	Congestive Heart Failure
0	Hypertension
0	Obstructive Sleep Apnea
0	Osteoarthritis
0	Type 2 Diabetes Mellitus
0	Metabolic Dysfunction Associated Steatohepatitis (MASH)

Most studies published in NEJM or BMJ

31

Obesity and its many risks

- Coronary artery diseaseCongestive Heart FailureHypertension

- Obstructive Sleep Apnea Osteoarthritis

- Type 2 Diabetes Mellitus
 Metabolic Dysfunction Associated
 Steatohepatitis (MASH)

32

Obesity and its many risks

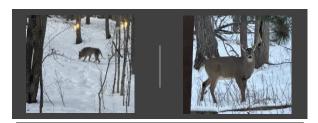
- Coronary artery disease

SELECT Trial (2023)

- Semaglutic
 Inclusion Criteria
 Patients with BMI >27
 Average BMI 33.3
 CV Disease
 68% with prior MI
 18% with prior stroke
 8% with more than one
 NO diabetes

34

Obesity and its many risks


Coronary artery disease

SELECT Trial (2023)

Semaglutide

- · Lower Composite CV End Point (HR 0.80)
- Lower Heart failure composite end point (HR 0.82)
- · Lower All cause mortality (HR 0.81)
- Almost significant lower CV mortality (HR 0.85, p=0.07)

35

TAKE A BREAK SLIDE - DULUTH FAUNA

Obesity and its many risks

- Congestive Heart Failure

- SUMMIT Trial (2025)

- · Inclusion Criteria

- Adjusts and older
 Awenge 65
 BMI > 30
 Awenge 31
 Decompensation episode within the last 12
 months OR EGFR < 70 m/m/1 / 73 m/2

37

Obesity and its many risks

- Congestive Heart Failure

SUMMIT Trial (2025)

- Tirzepatide
- · Lower Composite (0.62 HR)
- Decreased Hospitalization (0.44 HR)
- Improved KCCQ-CSS Score (+6.9)
- 6-minute walking distance (+18.3 m)

38

Obesity and its many risks

- Hypertension

SUMMIT Trial (2025)

Tirzepatide

Systolic BP reduction (- 4.6 mmHg)

SELECT Trial (2023)

Semaglutide

- Systolic BP reduction (- 3.31 mmHg)
- Diastolic BP reduction (- 0.55 mmHg)

TAKE A BREAK SLIDE - DULUTH FAUNA

40

Coronary artery disease Congestive Heart Failure Hypertension Obstructive Sleep Apnea Osteoarthmis Type 2 Diabetes Mellitus Metabolic Dysfunction Associated Steatohepatitis (MASH) SURMOUNT-OSA Trial (2024) Tirzepatide: 25.3 events/nr Placebo: -3.3 events/nr Tirzepatide: -25.3 events/nr Systolic blood pressure Tirzepatide: -9.5 mmHg Placebo: -2.1 mmHg

41

Coronary artery disease Congestive Heart Failure Congestive Heart Failure Hypertension Obstructive Sleep Apnea Osteoarthritis Type 2 Diabetes Mellitus Metabolic Dysfunction Associated Steatohepatitis (MASH) Steatohepatitis (MASH) STEP 9 Trial (2024) Semagluitide Fercentage of participants with > 30 point reduction Semagluitide: 77.5 Placebo: 57.8 Semagluitide: 65.2 Placebo: 35.3

Obesity and its many risks

- Type 2 Diabetes Mellitus

SURMOUNT-1 Trial (2024)

- PREVENTION (over 176 weeks)
- New onset Type 2 Diabetes Mellitus
- Tirzepatide HR: 0.07
 Metformin HR: 0.83

43

TAKE A BREAK SLIDE - DULUTH FAUNA

44

Obesity and its many risks

- Metabolic Dysfunction Associated Steatohepatitis (MASH)
- · AKA NASH
- Non-alcoholic steatohepatitis
- · I'm gonna focus on this for a minute. Prevalence increasing
- · 2010: 1.51% · 2020: 2.79%
- And most of all...

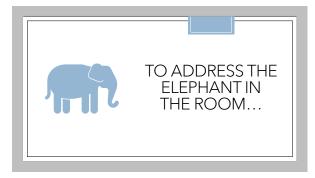
0	
0	Notoriously
0	•
0	difficult to
0	
0	treat

Coronary artery disease Congestive Heart Failure Hypertension Obsteoarthritis Type 2 Diabetes Mellitus Metabolic Dysfunction Associated Steatohepatitis (MASH) Metabolic Dysfunction Associated Steatohepatitis (MASH) Newsome et al. 2020 Semaglutide (0.4 mg max dose) Resolution of NASH with no worsening of fibrosis (6.87 OR) fibrosis (6.87 OR) * 50% with 0.4 mg * 40% with 0.1 mg * 17% with placebo

How GLP-1 is related to addiction

"Several preclinical studies have described the role of GLP-1 in reward processing, stress regulation, and cognitive function, collectively suggesting that targeting the GLP-1 system may represent a novel pharmacotherape

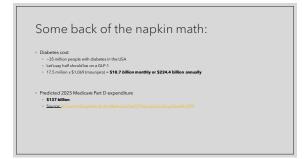
49



50

Alcohol use disorder

Į.		0.44 HR recurrent semaglutide)
Ť	RCT Feb 2025 in JAMA: signif alcohol consumption at 8 wee	icantly less ks (semaglutide)
Â	Cohort study in JAMA psych Nov 2024: 0.64 aHR (semaglutide) and 0.72 (liraglutide) decreased risk hospitalization	Disulfiram: 0.98 (0.96-1.00) aHR Acamprosate 1.11 aHR Natresone: 0.86 aHR



(Citations	
	Zheng, Z., Zong, Y., Ma, Y. et al. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Sig Transduct Target Ther 9, 234 (2024). https://doi.org/10.1038/s41392-024-01931_z	
	Beth Israel Lakey Health Conversion and Therapy Gap Management Guide, BILH-GLP1RA-Conversion-Guide.pdf	
	Marks, D. B., Lieberman, M., Marks, A., & Peet, A. (2013). Basic medical biochemistry: A clinical approach. Wolters Kluwer / Lippincott Williams & Wilkins.	
Ł	Nauck M. Frid A. Hemansen K. Shah NS, Taskova T. Miha R. Zdevikovick M. Dicing M. Matthwe IR. (EAD-25 sudy Group. Tickzy and safety comparison of linguishing, dismejorids, and placebo, all in combination with method mis in page 2 disabates: the EAD (Insighteds effect and action in diabetes)-2 study. Diabates Care. 2009 Jan;32(1):84-90. doi: 10.2337/dcl8-1355. Epub 2008 tct 17, PMID: 1893/05; PMID: PMICAGO6838.	
	Jendle J, Grunberger G, Blevins T, Giorgino F, Hietpas RT, Botros FT. Efficacy and safety of dulaglutide in the treatment of type 2 slabetes: a comprehensive review of the dulaglutide clinical data focusing on the AWARD phase 3 clinical trial program. Diabetes teach Res Rev. 2016. Nov. 22(8):776–790. doi: 10.1002/drm-2281. Cpub. 2016. My 15. PMID: 2710/299.	
	Steven P. Marso, M.D., Stephen C. Bain, M.D., Agostino Consoli, M.D., Freddy G. Biaschewitz, M.D. et al. Semaglutide and airdiovascular Outcomes in patients with type 2 diabetes. New England Journal of Medicine. 2016 Nov.	
T	Frias, J. P., Davies, M. J., Rosenstock, J., Manghi, F. C. P., Landó, L. F., Bergman, B. K., Liu, B., Cui, X., & Brown, K. (2021). irzapatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. New England Journal of Medicine, 385(6), 503-515. ttts://doi.or/10.1056/nempa.2010.056/nempa.2010.	

Citations Mares, S. F. Desak, G. S. Brown Functions, C. Fortences Y. Mares, J. F. Facult, M. A. Waser, S. E. Forten, S. F. Paulor, M. S. Baue, L. S. Mares, S. F. Desak, G. S. Brown Functions, C. Fortences Y. Mares, J. F. Facult, M. A. Waser, S. E. Forten, S. F. Paulor, M. S. Baue, L. S. England Source and Medicines, 279(4, 311-322. https://doi.org/10.1016/j.cmpn.pdf.1016/2. Genome, M. C. Colhou, H. M. D. Quesa, G. B., Dan, E. La Browner, M. F. Paulor, L. Browner, S. F. Budde, M. C. Papino, L. Starer, C. Americ, G. Doi, H. Tall, S. Brown Merch, F. Wing, G. Americ, A. Horis, L. E. Derrit, D. Wingshield and International Plantage and I

Citations	
 Liccolf, A. M. Broson Franches, K., Colhoux, H. M., Duerfold, J., Emerson, S., Elbjerrig, S., Herbé Lindberg, S., Herbogh, C. K., Kalhy, S. E., Kushwe, R. F., Lizyope, C. Guil, T. K., Michalen, M. M., Pizdey, J., Torreac, C. W., B. Syar, O. H. (2023). Semegloide and Cardionicsin Contornes in Disaby without Disbertes. New England Journal of Medicine, 399764, 2221-2232. https://doi.org/10.1016/j.jmpe.2023/75.33 	
Packer, M., Zile, M. R., Kramer, C. M., Baum, S. J., Lihavin, S. E., Menon, V., Ge, J., Weerskkody, G. J., Ou, Y., Bunck, M. C., Hurt, K. C., Murakami, M., & Bodiusg, B. A. (2024). Transparide for Heart Failure with Preserved Ejection Fraction and Obesity. New England Journal of Medicine. https://doi.org/10.1006/sci.negus.45.0007. Journal of Medicine. https://doi.org/10.1006/sci.negus.45.0007.	
 Osama Hamid, Ahmed Bhilbary, Abdul Mohemmed, Naked Alsabbagh Alchirasi, Subrut Trakron, Imad Assad, The epidemiology of non-alchiraci intentin-particip (MCH) in the United States between 2010-2020: a population-based study, Annals of Hepatology, Vision 27, Nau S. 2022 (1027); 2631 466-263. 	
 Newsome, P. N., Buchholz, K., Caix, K., Linder, M., Olanoue, T., Ruziu, V., Saryal, A. J., Sejling, A., & Harrison, S. A. (2020). A Pleade-Control but foll subclusions as amaginida in nonalcoholic steatohepatris. New England Journal of Medicine, 384(12), 1113-1124. https://doi.org/10.1056/nejmos/2028395 	
 Mahotza, A., Gruntarin, R. R., Fatza, I., Waseer, T. E., Redline, S., Asarbazzin, A., Sands, S. A., Schwah, R. J., Dunn, J. P., Chaldadur, S., Banch, M. C., & Berdmark, J. (2004). Transparide for the transment of clustroction always grows and clustery. New England Journal of Medicine, 371(13), 1173-1205. https://doi.org/10.1056/nepimea2444881 	

Citations - Biddd, N. Bay, N. Clemidom, S. Hemmingson, J. U., Hjehmeasth, J. Morolle, T. H., Korolen, A., Neergaard, J. S. Sandwa, P. V., Whatman, K., Waer, A., & Korleman, I. E. (2020, Onco-Weelly Stemaghinian in Proven and Chesley and Dose Characteristic New Bergland Journal of Medicine, 29(1): 1323–1428. https://doi.org/10.1016/journal-pide/files/pre-grand-pid

65

Citations - Cuses Hamid, Abmed Shelbury, Abdul Molammed, Shaled Abadesph Advisor, Sashor Trainro, Israel Assact The spideminiting of Ann-Adviside, describugants (MASH) in the United States between 2010-2020: a population-based study, Armals of Hepatology, Volume 27, Israe S, 2022, 100727, ISSN 1465-2481